Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexandre N. Sobolev, ${ }^{\text {a }}$ *
Elguja B. Miminoshvili, ${ }^{\text {b }}$
Ketevan E. Miminoshvili ${ }^{\text {b }}$ and Tamara N. Sakvarelidze ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry Section, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, W.A., Australia, and ${ }^{\mathbf{b}}$ Republican Centre of Structural Studies, Georgia Technical University, 77 Kostava Ave., Tbilisi, 380075, Georgia

Correspondence e-mail: ans@chem.uwa.edu.au

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.018$
$w R$ factor $=0.047$
Data-to-parameter ratio $=27.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Cobalt diacetate tetrahydrate

The crystal structure of tetra-aqua-bis(acetato- O)cobalt(II), $\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, has been determined at 153 K , providing a precise description of the geometric parameters and details of the hydrogen-bonding system operating in the crystal.

Comment

A number of divalent metal acetates crystallize from aqueous solution as tetrahydrates. The crystal structures of the isomorphous magnesium (Irish et al., 1991; Trunov \& Endeladze, 1986) and nickel (Treushnikov et al., 1980; Cramer et al., 1975; Downie et al., 1971; van Niekerk \& Schoening, 1953) derivatives have been established in detail, while earlier it was shown that the cobalt(II) analogue was also isomorphous (van Niekerk \& Schoening, 1953). The structure of the latter has not otherwise been determined, a deficiency which we rectify here.

Like its magnesium and nickel counterparts, cobalt(II) acetate tetrahydrate crystallizes in monoclinic space group $P 2_{1} / c, Z=2$, so that one half of the formula unit comprises the asymmetric unit of the structure. All component moieties are coordinated to the metal, the unidentate O-acetate anions lying obligate trans about it, by virtue of the $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{O}-\right.$ $\left.\mathrm{CO}-\mathrm{CH}_{3}\right)_{2}$] molecule being centrosymmetric, the cobalt lying on a crystallographic inversion centre. As in the magnesium and nickel analogues, the metal-oxygen distances span a range of less than $0.05 \AA$ (Table 1), the distances to the two water molecules straddling that to the acetate $[M-\mathrm{O} 2.0761$ (8), 2.1091 (8), 2.0577 (9) $\AA, M=\mathrm{Mg}$ (Irish et al., 1991); $M-\mathrm{O}$ 2.072 (1), 2.092 (1), 2.048 (1) $\AA, M=\mathrm{Ni}$ (derivative of the electron-density-distribution study, Treushnikov et al., 1980)]. The water molecule H atoms are all involved in hydrogen bonding, one of these bonds being intramolecular, tethering the uncoordinated oxygen of the acetate. Geometries within the acetate are unexceptional; $\mathrm{Co}-\mathrm{O}$ may be compared with corresponding distances in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{OOC}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{COO}\right)\right]_{n}$ $\left[\mathrm{Co}-\mathrm{OH}_{2} 2.079(2)-2.138\right.$ (2), $\mathrm{Co}-\mathrm{O}_{\text {(carboxylate) }} 2.089$ (2) and 2.096 (2); Zheng \& Lin, 2000)] and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{OOC}-\left(\mathrm{CH}_{2}\right)_{4}-\right.\right.$ $\mathrm{COO})]_{n} \quad\left[\mathrm{Co}-\mathrm{OH}_{2} 2.085(3), \quad 2.106\right.$ (3), $\mathrm{Co}-\mathrm{O}_{\text {(carboxylate) }}$ 2.090 (4) A; Suresh et al., 1999]. The unique set of hydrogen bonds is tabulated in Table 2 and the hydrogen-bonding

Received 27 August 2003

 Accepted 29 August 2003 Online 5 September 2003system involving one molecule of cobalt diacetate tetrahydrate are shown in Fig. 1.

Experimental

Pink crystals of tetra-aqua-bis(acetato- O)cobalt(II) were obtained as a by-product during the synthesis of complexes of the $3 d$ metals with organic ligands from aqueous solution (Shvelashvili et al., 2001).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$	$D_{x}=1.767 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=249.08$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\mathrm{d}} / c$	Cell parameters from 6622
$a=4.7744$ (3) A	reflections
$b=11.8425$ (8) \AA	$\theta=3.0-37.5{ }^{\circ}$
$c=8.2904$ (6) \AA	$\mu=1.85 \mathrm{~mm}^{-1}$
$\beta=93.142$ (2) ${ }^{\circ}$	$T=153$ (2) K
$V=468.04$ (5) \AA^{3}	Cuboid, pink
$Z=2$	$0.48 \times 0.42 \times 0.38 \mathrm{~mm}$
Data collection	
Bruker AXS SMART CCD diffractometer	2429 independent reflections 2241 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.018$
Absorption correction: multi-scan	$\theta_{\text {max }}=37.5^{\circ}$
(SADABS; Bruker, 1997)	$h=-8 \rightarrow 7$
$T_{\text {min }}=0.430, T_{\text {max }}=0.499$	$k=0 \rightarrow 20$
9443 measured reflections	$l=0 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.047$
$S=1.08$
2429 reflections
90 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0215 P)^{2}\right. \\
& \quad+0.1094 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / /)_{\max }<0.001 \\
& \Delta \rho_{\max } 0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.041(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 1$	$2.0929(5)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.2767(8)$
$\mathrm{Co}-\mathrm{O} 3$	$2.0853(5)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.2550(8)$
$\mathrm{Co}-\mathrm{O} 4$	$2.1144(5)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.5001(9)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	$90.54(2)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 4^{\mathrm{i}}$	$89.52(2)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 4$	$89.72(2)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Co}$	$125.47(4)$
$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 4$	$90.48(2)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$123.11(6)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	$89.46(2)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$119.55(6)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 4^{\mathrm{i}}$	$90.28(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.32(6)$

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H31 \cdots O2	$0.83(2)$	$1.84(2)$	$2.6282(8)$	$160(2)$
O3-H32 $\cdots 4^{\text {ii }}$	$0.82(2)$	$2.05(2)$	$2.8041(7)$	$153(1)$
O4-H41 \cdots O $^{\text {iii }}$	$0.82(2)$	$1.93(2)$	$2.7084(7)$	$159(1)$
O4-H42 $^{\text {in }}{ }^{\text {iv }}$	$0.85(2)$	$1.85(2)$	$2.6935(7)$	$174(1)$
Symmetry codes: (ii) $1-x,-y,-z ;$ (iii) $1+x, y, z$; (iv) $x, \frac{1}{2}-y, z-\frac{1}{2}$				

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve

Figure 1
Details of the hydrogen-bonding of the cobalt diacetate tetrahydrate crystal structure. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. Symmetry codes: (i) $x+1, y, z$; (ii) $x, \frac{1}{2}-y$, $z-\frac{1}{2}$; (iii) $1-x,-y,-z$; (iv) $x, \frac{1}{2}-y+\frac{1}{2}, z+\frac{1}{2}$ with their centrosymmetric complement $(-x,-y,-z)$.
structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank Professor Allan H. White for experimental assistance and helpful discussions.

References

Bruker (1997). SMART, SAINT, SADABS (Version 5.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Cramer, R. E., van Doorne, M. \& Dubois, R. (1975). Inorg. Chem. 14, 24622466.

Downie, T. C., Harrison, W. \& Raper, E. S. (1971). Acta Cryst. B27, 706-712.
Irish, D. E., Semmler, J, Taylor, N. J. \& Toogood, G. E. (1991). Acta Cryst. C47, 2322-2324.
Niekerk, J. N. van \& Schoening, F. R. L. (1953). Acta Cryst. 6, 609-612.
Shvelashvili, A., Amirkhanashvili, K., Sakvarelidze, T. \& Adeishvili, G. (2001). Bull. Georgian Acad. Sci. 164, 488-491.
Suresh, E., Bhadbhade, M. M. \& Venkatasubramanian, K. (1999). Polyhedron, 18, 657-667.
Treushnikov, E. N., Kuskov, V. I., Aslanov, L. A. \& Soboleva, L. V. (1980). Sov. Phys. Crystallogr. 25, 160-170.
Trunov, V. K. \& Endeladze, N. O. (1986). J. Struct. Chem. 27, 812-814 (translation from Russian).
Zheng, Y.-O. \& Lin, J.-L. (2000). Z. Kristallogr. New Cryst. Struct. 215, 159160.

